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Approximate relations will be derived connecting the parameters of the 
external flow, the boundary layer thickness and the electromagnetic 
quantities at the section where the laxtinar ~agnetohydrodynamic hound- 
ary layer detaches. 

1. Let us consider a two-dimensional boundary layer on the surface 
of a body or on the wall of a channel. The x-axis will be directed along 
the wall and the y-axis perpendicular to it. We assume that the external 
magnetic field vector lies in the xy-plane and that the characteristic 
dimension A of the variation of its components either exceeds or equals, 
in order of magnitude, the characteristic body length 1. Moreover, we 
assume that the magnetic Reynolds number, defined by the characteristic 
velocity, the electrical conductivity and the length 1, is equal to or 
less than unity in order of magnitude. Then the equations of the bound- 
ary layer for isotropic transport properties raay be written as 

(1.1) 
au au d au 

Paar+Pvay=-P’+ayrlay- c QEB - FB2 (E = (0, 0, E), E = const) 

In the system (1.1) to (1.4). E is the constant z-component of the 
electric field, B = B(X) is the y-component of the magnetic field vector 
on the wall, p’ = (dpo/dx) is the pressure gradient in the external flow, 
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c is the speed of light in vacuum and the rest of the notation has the 

usual meaning. In the momentum and energy equations, we have omitted 

terms whose ratios to the remaining terms have the order (6/L), (6/A) 

or higher; 8 being the boundary layer thickness. Differentiating the 

momentum and energy equations with respect to y and taking into account 

the accuracy of the boundary layer theory is equivalent to differentiat- 

ing equations (1.1) and (1.3) with respect to y. 

The instant of breakdown of the ideal flow scheme in the boundary 

layer (separation of the boundary layer) corresponds to the vanishing 

at the wall of the quantity au/a?, calculated from the boundary layer 

equations. We define the separation point on the wall to be that at 

which u = 0, v = 0 and (aa/ay) = 0. To arrive at a relation between the 

‘parameters at the separation section (corresponding to the separation 

point), we shall use a method well-known in hydrodynamics, in which the 

velocity profile at the separation point is first determined. To this 

end, we successively differentiate equations (1. 1) and (1.3) with re- 

spect to y. use the obtained expression for the separation point and 

compute the derivatives ?‘a/ay*, a3u/ay3, . . . . which Permit the Velocity 

profile to be represented in a Taylor series. 

2. We assume that the surface of the body is thermally insulated and 

that the electric field in it is zero. The velocity profile at the Point 

of separation, as described above, can be represented as 

Here the quantities B, a, A, p’ and q, all correspond to the values 

at the separation point, and the value of A is independent of the mag- 

netic field and the electrical conductivity. Let us estimate the order 

of magnitude of the term contained in the square brackets. The quantity 

(oE*62/l-& = H2, representing the Hartmann number defined by the bound- 

ary layer thickness, characterizes the ratio of the magnetic drag to 

the viscous drag. Since the viscous forces and the inertial forces are 

of the same order in the boundary layer, the quantity 11* may also be 

considered as the ratio of the magnetic forces to the inertial forces, 

i.e. in order of magnitude it agrees with the magnetic interaction para- 

meter. The latter parameter has order unity in practical applications. 

Thus, the second term in the square brackets is of the order of l/12, 

the third term of the order of l/360, while the fourth term (for which 

an order of magnitude estimate had been carried out in studying separa- 

tion of hydrodynamic boundary layers) is of the order of thousandths. 

Consequently, (retaining the third term in case the Hartmann number 

should be significantly greater than one) the velocity profile at the 

separation point may be approximately expressed as 
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u(y) = pq$ 
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(2.2) 

In other words, the separation of the boundary layer occurs at the 
section where the flow velocity u0 (at the outer edge), the Pressure 
gradient p *. the boundary layer thickness 6 and the strength of the 
magnetic field are connected by the relation 

E* = 2[l+gg+&o(~)y-1 (E+-J (2.3) 

Here !j* is the value of < at the separation section. For B = 0, we 
obtain from (2.3) the well-known result from hydrodynamics c* = 2. In 
the range 0 <<H & 4 of the Hartmann number II, we may write g* as follows 
with reasonable accuracy (the relative error increases monotonically 
with H and equals 10% at ff = 4): 

(2.4) 

Formula (2.4) is the desired relation. It has been obtained for 

arbitrary distribution of the magnetic field on the surface and takes 
into account the properties of the real gas in thermodynamic equilibrium 
for a thermally insulated surface. We must remember that the Hartmann 
number in (2.4) is defined by the quantities B, u and ‘1 at the separa- 
tion point. For an incompressible fluid with constant a and Q, (2.4) is 
correct for any thermal range of the surface. As H increases, the func- 

tion f(H) monotonically decreases. Consequently, for R f 0, separation 
occurs at smaller values of <* than for B = 0. Compare for example the 
flow around a body for B = 0 and for B # 0, assuming that the external 
flow does not depend on the field. Since with the field, f(H) < f(0) =2. 

and the boundary layer thickness increases faster than for B = 0, the 
separation point moves upstream along the body surface. 

If the pressure distribution at the outer edge of the boundary layer 

is known, then, computing the boundary layer thickness from some 
empirical formula, we may use (2.23 to determine the separation point 
of the boundary layer without having to solve equations (1.1) to (1.4). 

We note that in (2.1). the second derivative of the pressure first 

appears in the coefficient for the sixth power of y. while the deriva- 
tive of the magnetic field dB/dx enters in coefficients of still higher 

powers of y. This permits us to conclude that the flow at the section 

where separation occurs depends only weakly on the nature of the ex- 

ternal flow and of the magnetic field far away from this section. In the 

absence of the magnetic field, such a conclusion is usually extended to 
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any arbitrary section [ll. Whether this assertion can be extended to 
the entire magnetohydrodynamic boundary layer requires additional justi- 
fications. 

In concluding this section, let us give a confirmation of the approxi- 
mate formula (2.2). Let us consider the boundary layer in the divergent 
flow of a conducting fluid between two plane walls forming an angle 
(diffuser), the magnetic field being such that it is perpendicular to 
the plane of the flow at the vertex of the angle. This flow has been 
studied in, e.g. [21. In particular, an exact solution was obtained for 
the case where the wall drag vanishes. We may verify that the velocity 
distribution corresponding to this exact solution agrees reasonably well 
with that given approximately by (2.2). 

3. In order to calculate the magnetohydrodynamic boundary layer and 
its separation, we may use the Karman integral relations, as in hydro- 
dynamic boundary layers. Ue shall derive the equation for the thickness 
of the boundary layer for the case of Prandtl number unity, E = 0. and 
insulated wall. From the energy equation (1.3). we find that the stagna- 
tion enthalpy i in the 
stagnation enth:lpy i 

9(x, 6, 2). 
l e 

Considering 
viscosity coefficient 7l 
we find 

boundary layer is constant and is equal to the 
in the external flow. Let (u/u0 = 9(x, 6, y/S) = 
the density, electrical conductivity, and the 
as functions of the pressure and the enthalpy i, 

P P (P, i) i n 

-77 = ---77- = p” P (p, i,0 
P P 

- 0.5uo’cpa) = N1 (x, 6, z), + = N, (s, 6, z) 

where p” and a0 are characteristic constants. Integrating (1.1) from 

y = 0 to y = 6, we get 

1 1 1 

( s CL~ = cpN*dr, at = ((p - cp2) Nldz, az = 
c c 

((p - 2cp2) Nldr 
.I 

0 0 b 

If the boundary layer thickness does not enter the function ~J(x,~,z), 
then equation (3.1) becomes a linear first order differential equation. 

Equation (3.1) assumes a much simpler form for the case of flat walls 
Using this, the increase of the rate of growth af the boundary layer 
thickness, the increase of the total drag and the decrease of the fric- 
tion drag, when a magnetic field is present, can easily be demonstrated. 

4. Consider an incompressible medium with constant u and q, and a 

non-vanishing electric field. One easily verifies that a relation 

analogous to (2.4) can be obtained by substituting p’ + (oEB/c) for p’ 
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(4.1) 

in (2.4). Thus, we find 

P’ + (DEB I c) H” -___ 
lluo =uuhH- 1 

or, using equation (1.1) for the external flow 

& 
-&o”O 

atiuO 
2 -t 7) =&A (4.2) 

Since f(H) > 0, in order that separation occurs, the external flow 

must be a retarding flow, and 1 du,/dx) 1 ’ (~R’/c*p). 

To determine the value c* at which separation occurs, expression 

(4.1) may be written as 

II” 
f* = ap+coehli_ 1 = 9 (h, H) k=-$) (4.3 

The term AH* reflects the electromagnetic field, which gives a body 

force (- oER/c) per unit volume, while the term II*(cosh II - 1)-l re- 

fleets the magnetohydrodynamic in- 

fluence, which gives a force 

(- ~?*u/c*) per unit volume. For 

?I > 0. the force (- uEB/c) acts in 

the direction of the flow, while the 

force (- crB*u/c*) acts against the 

flow: for A ( 0. both forces act 

against the flow. The function 

~(h. 11) is given in the figure. The 

influence of the electromagnetic 

field on the quantity t* is seen to 

be greater than the magnetohydro- 

dynamic influence. For small h > 0 

and sufficiently large H, we have 

<* > 2 (for A > l/6. <* always > 2); 

0. For ?I < 0, we may have c* < 0. while <* < 2 for A = 0 and any I1 f 

The explanation of the influence of the electromagnetic field on t* con- 

sists of the following. The influence of the force that distorts the 

profile is first felt at the part of the profile nearest to the wall. 

The force (- ~B*u/c*) for a small velocity (near the wall) is smaller 

than the force (- uER/c), which is independent of velocity. 

5. Let us consider a simple exact solution, to confirm the conclusion 

of the Previous section. Let an incompressible fluid with constant q 

move in a plane channel - ~0 < x < + m, 0 < y < 6, the upper wall of which 
has a velocity u,, = const, and the lower wall is stationary (Couette 
flow). Let there be a constant electric field along the r-direction. and 
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a constant magnetic field in the y-direction. For generality, let the 
electrical conductivity be an arbitrary function of the velocity 
o = o”xtu/ao). The flow is described by the equations 

cp” - H=TX + hH2x - % = 0, cp (0) = 0, ‘p (1) = 1 (5.1) 

Its solution has the form 

(5.3) 

To determine <* from (5.3), it is necessary to set q’(O) = 0. If we 
assume that the electrical conductivity is constant (x = l), we find 
from (5.3) the condition equivalent to (4.3). 

6. Let us now consider boundary layers formed on the walls of 
channel-electrodes. Let the x-axis be in the direction of the electrode 
and the y-axis perpendicular to it. It is known that the equations of 
the boundary layer have the form [31 

(6.3) 

f (P, P, T) = 0 (6.4) 

In equations (6.1) and (6.3). j is the component of the current 
density in the y-direction and R is the component of the magnetic field 
in the (-z)-direction. The magnitude of j is found from the solution of 
the inviscid flow problem. 

For simplicity, we assume that the variation of p and 7 in the bound- 
ary layer may be neglected. Then, using the method given in Section 1 
and 2, we find the following relations for the separation point: 

62 
-g-p + P’) = 2, 

ptP duo 

WO 

5”=2_-i2xL, -=2 
-7j- dx (6.5) 

The author thanks G.M. on the 

work. 
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